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1) INTRODUCTION
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1) INTRODUCTION

A material is either a metal or an insulator, however

Some materials are insulators in their bulk
and conductors on their edges !

Topological insulators adeline.crepieux@univ-amu.fr 4 / 32



1) INTRODUCTION

NEW CLASSIFICATION OF MATERIALS

1 Conventional material
Phase transition = Symmetry breaking + Non-zero order parameter
Example : paramagnetic → ferromagnetic transition with decreasing T
shows a reduction of its symmetry properties and the appearance of a
finite magnetization 〈M〉.

2 Topological material
→ No symmetry breaking
→ Laudau-Ginzburg theory does not apply
Pioneering examples : Kosterlitz-Thouless transition (1973)

Quantum Hall effect (1980)
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1) INTRODUCTION

SOME FEATURES

The edge states play a fundamental role, since they allow to the
electrical current to circulate in topological insulators :

Living on the edge

The current propagate without dissipation on the edge states.

The Hall conductivity is equal to the quantum of conductance
e2/h times an integer value C, called Chern number :

σH =
e2

h
C
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1) INTRODUCTION

HOW COULD THEY BE USED?

Electronics → Spintronics → Topotronics

ADVANTAGES

Do not require any external magnetic field :
internal spin-orbit coupling plays the role of magnetic field

Spin-filtering counter-propagating modes (helical edge modes)

Room temperature device

No dissipation

NEXT GENERATION TRANSISTOR?
Click to see the video
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1) INTRODUCTION

NOBEL PRIZE IN PHYSICS IN 2016 : the tools of topology
are used to study the exotic states in matter

D.J. Thouless :

Concept of topological order

Notion of topological invariants

F.D.M. Haldane :

Theory of the fractional quantum Hall effect

J.M. Kosterlitz :

Study of phase transitions in topological

materials (Kosterlitz-Thouless transition)
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1) INTRODUCTION

Definition

The topology is the branch of mathematics which studies the spatial
deformations of objects under continuous transformations, i.e. without
cutting or re-collations applied to the structures. See the video

A cup can be transform to a donut
(torus) with a continuous deformation :
these two objects have the same
topological index χ, called the Euler

characteristic. We have : χ = 2(1− g)

where g (genus) is the number of holes.
Torus : g = 1⇒ χ = 0
Cube, cylinder cone and sphere are
topologically equivalent.
Sphere : g = 0⇒ χ = 2
We have also χ = nV − nE + nF
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1) INTRODUCTION

TOPOLOGY OF THE ENERGY BANDS IN A SOLID

Band inversion
at dc = 6.3 nm

I : d = 5.5 nm
→ Trivial insulator
II, III, IV : d = 7.3 nm

→ Topological insulator
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1) INTRODUCTION

GAP CLOSURE

At the interface between two insulators :

If they are both trivial, or both topological, they have the same
Chern number C : it is possible to go from one to the other thanks to a
continuous transformation without closing the gap.

If one is trivial and the other topological, they have distinct Chern
numbers : C1 6= C2. The gap will be closed at the interface, leading to
the appearance of conducting edge states. This is precisely what it is
observed at the interface between a topological insulator and the
vacuum (= trivial insulator).
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2) HISTORY
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2) HISTORY

QUANTUM HALL EFFECT

R =
mv0

eH

GALLIUM ARSENIDE 2DEG

(1980) ρH =
h

e2

1

C
(1982) D.J. Thouless and
co-workers showed that C is a
topological invariant

(1985) Klaus von Klitzing got
the Nobel prize in physics
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2) HISTORY

2D TOPOLOGICAL INSULATORS

Magnetic field → Hall effect

Spin-orbit coupling → Spin Hall effect

Magnetic material → Anomalous Hall effect
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2) HISTORY

3D TOPOLOGICAL INSULATORS (2009)
Material with strong spin-orbit coupling : Bi2Se3

ARPES

Surface states

See the video on ARPES
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3) CHARACTERIZATION
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3) CHARACTERIZATION

BERRY CONNEXION

~An(~k) = iΨ†n(~k)~∇~kΨn(~k)

where Ψn(~k) are the eigenvectors
of the Hamiltonian H :

HΨn(~k) = En(~k)Ψn(~k)

Michael Berry

BERRY CURVATURE

~Bn(~k) = ~∇~k × ~An(~k) =
−→
rot~k

~An(~k)

ANALOGY
Berry connexion ~An(~k) −→ Potential vector ~A(~r)

Berry curvature ~Bn(~k) = ~∇~k × ~An(~k) −→ Magnetic field ~B(~r) = ~∇~r × ~A(~r)
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3) CHARACTERIZATION

BERRY PHASE ΦB =
∫
~B(~k) · d ~S

The Berry phase can be seen as the phase gained by the wave function
when the wave vector follows a close trajectory in the Brillouin zone.

See the video
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3) CHARACTERIZATION

ANOMALOUS VELOCITY

~vn(~k) = 1
~
~∇~kEn(~k)− ~̇k × ~Bn(~k)

Similar in form with the Lorentz force : ~F = −e ~E − e~v × ~B
⇒ Exercise 1 : use the anomalous velocity to show that σH = (e2/h)C

CHERN NUMBER

C = 1
2π

∑
n

∫
~Bn(~k) · d ~S = ΦB

2π

TOPOLOGICAL INVARIANT Z2

Z2 = 1
2π

[∮
δ1BZ

~A(~k) · d~k −
∫

1BZ
~B(~k) · d ~S

]
mod(2)
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EXERCISE 1 : SHOW THAT σH = (e2/h)C
Electrical current : ~I = −en〈~v〉
Average velocity in the framework of Boltzmann equation theory :

〈~v〉 =

∫
1BZ

d3k
(2π)3 ~v(~k)f (~k)∫

1BZ
d3k

(2π)3 f (~k)

where

n =
∫

1BZ
d3k

(2π)3 f (~k) is the electron density

f (~k) is the out-of-equilibrium distribution function

~v(~k) = −
∑

n
~̇k × ~Bn(~k) is the anomalous velocity, with ~~̇k = ~F

Thus,

~I = e
∑
n

∫
1BZ

d3k

(2π)3
~̇k × ~Bn(~k)f (~k) =

e

~
∑
n

∫
1BZ

d3k

(2π)3
~F × ~Bn(~k)f (~k)
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EXERCISE 1 : SHOW THAT σH = (e2/h)C
For ~B = ~0, one has ~F = −e ~E , where ~E is the electrical field, thus

~I = −e2

~
∑
n

∫
1BZ

d3k

(2π)3
~E × ~Bn(~k)f (~k)

We expand the curl product : Ix
Iy
Iz

 = −e2

~
∑
n

∫
1BZ

d3k

(2π)3

 EyBn,z(~k)− EzBn,y (~k)

EzBn,x(~k)− ExBn,z(~k)

ExBn,y (~k)− EyBn,x(~k)

 f (~k)

Since one has ~I = σ~E and σH = |σxy |, one deduces that

σH =
e2

2π~
∑
n

1

2π

∫
1BZ

dkxdkyBn,z(~k)︸ ︷︷ ︸
= 1

2π

∫
1BZ

d~S·~Bn(~k)=Cn

1

2π

∫
1BZ

dkz f (~k)︸ ︷︷ ︸
=1

Result : σH = e2

h

∑
n Cn = e2

h C
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4) DIRAC-WEYL HAMILTONIAN
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4) DIRAC-WEYL HAMILTONIAN

DOPED GRAPHENE

HAMILTONIAN

H = ~vF~k · ~σ = ~q · ~σ + mσz

with qx ≡ ~vFkx , qy ≡ ~vFky , m ≡ ~vFkz
and σx , σy , σz , the Pauli matrices
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4) DIRAC-WEYL HAMILTONIAN

HAMILTONIAN
Pauli matrices :

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
Matrix form :

H =

(
m qx − iqy

qx + iqy −m

)
BAND STRUCTURE

E±m (~q) = ±
√

q2 + m2

m = 0→ massless Dirac cone

m 6= 0→ massive Dirac cone

⇒ Exercise 2 : Berry phase calculation
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EXERCISE 2 : Berry phase calculation

WORK TO DO
Starting from the Dirac-Weyl Hamiltonian :

H =

(
m qx − iqy

qx + iqy −m

)

It is asked you to calculate :

1 The eigenvalues E±m (~q) of H

2 The eigenvector Ψm(~q) associated to E+
m

3 The Berry connexion ~Am(~q) = iΨ†m(~q)~∇~qΨm(~q)

4 The Berry curvature ~Bm(~q) = ~∇~q × ~Am(~q)

5 The Berry phase ΦB =
∫
~Bm(~q) · d ~S
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EXERCISE 2 : Berry phase calculation

RESULTS

1 Eigenvalues : E±m (~q) = ±
√
q2 + m2

2 Eigenvector Ψm(~q) associated to E+
m :

Ψm(~q) =
1√

q2 + (m −
√
q2 + m2)2

(
qx − iqy√

q2 + m2 −m

)

3 Berry connexion :

~Am(~q) =
−qy~ex + qx~ey

2
√
q2 + m2(

√
q2 + m2 −m)

4 Berry curvature : ~Bm(~q) = m~ez
2(q2+m2)3/2

5 Berry phase : ΦB = ±πsgn(m)
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5) OTHER TOPOLOGICAL OBJECTS
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5) OTHER TOPOLOGICAL OBJECTS

SKYRMIONS = SPIN VORTICES

Lattice of skyrmions observed by Lorentz
microscopy at the surface of Fe1−xCoxSi (2011)
Dzyaloshinsky-Moriya interaction :

~Dij · (~Si × ~Sj)

Conditions :
Symmetry lowering + Spin-orbit coupling

Topological protected :
Cannot be removed by continuous transformation

May be used for high density data storage
See the video
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5) OTHER TOPOLOGICAL OBJECTS

MAJORANA FERMIONS (1937)
Real solution of the Dirac equation such as the particle and
anti-particle coincide : Ψ = Ψ∗.
As a consequence, creation and annihilation operators are equal :

γ = γ†

EXAMPLE : KITAEV SUPERCONDUCTING CHAIN (2001)

H = −µ
N∑

n=1

(c†ncn − 1/2) +
N−1∑
n=1

[t(c†ncn+1 + c†n+1cn)−∆(cncn+1 + c†n+1c
†
n)]

We use γAn = (cn + c†n)/
√

2 and γBn = i(cn − c†n)/
√

2, then :

H = iµ
N∑

n=1

γAn γ
B
n + i

N−1∑
n=1

[(t + ∆)γBn γ
A
n+1 − (t −∆)γAn γ

B
n+1]
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5) OTHER TOPOLOGICAL OBJECTS

EXAMPLE : KITAEV SUPERCONDUCTING CHAIN

We set µ = 0 and ∆ = t :

H = 2it
∑N−1

n=1 γ
B
n γ

A
n+1

Two Majorana fermions appear at the extremities of the chain.

(a) (b)

See the video
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6) SUMMARY
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6) SUMMARY

Insulator in the bulk but conductor on the surfaces/edges

Current propagate without dissipation

Crucial role played by the spin-orbit coupling

Opposite spins propagate in opposite direction

Phase transitions are not related to symmetry breaking

Instead, the system is characterized by topological invariants

New field of research : Topotronics

Book : Introduction à la physique de la matière condensée, Dunod (2019)
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https://www.dunod.com/sciences-techniques/introduction-physique-matiere-condensee-proprietes-electroniques

