

CONTENTS

- Introduction to topological insulators
 - What is it?
 - How they could be used?
 - Why a Nobel prize?
- 4 History
 - 2D topological insulators
 - 3D topological insulators
- Output
 Output
 Output
 Description
 Output
 Description
 Output
 Description
 - Berry connexion, Berry curvature and Berry phase
 - Anomalous velocity and topological invariants
- Oirac-Weyl Hamiltonian
- Other topological objects in condensed matter
 - Skyrmions
 - Majorana fermions
- Summary
- What you need to do and to know

3 / 32

A material is either a metal or an insulator, however

Some materials are insulators in their bulk and conductors on their edges!

NEW CLASSIFICATION OF MATERIALS

Conventional material

Phase transition = Symmetry breaking + Non-zero order parameter $\underline{\text{Example}}$: paramagnetic \rightarrow ferromagnetic transition with decreasing T shows a reduction of its symmetry properties and the appearance of a finite magnetization $\langle M \rangle$.

Topological material

- ightarrow No symmetry breaking
- → Laudau-Ginzburg theory does not apply

Pioneering examples: Kosterlitz-Thouless transition (1973)

Quantum Hall effect (1980)

SOME FEATURES

 The edge states play a fundamental role, since they allow to the electrical current to circulate in topological insulators:

Living on the edge

- The current propagate without dissipation on the edge states.
- The Hall conductivity is equal to the quantum of conductance e^2/h times an **integer value** C, called Chern number :

$$\sigma_{H} = \frac{e^{2}}{h} \, \mathcal{C}$$

HOW COULD THEY BE USED?

Electronics \rightarrow Spintronics \rightarrow **Topotronics**

ADVANTAGES

- Do not require any external magnetic field : internal spin-orbit coupling plays the role of magnetic field
- Spin-filtering counter-propagating modes (helical edge modes)
- Room temperature device
- No dissipation

NEXT GENERATION TRANSISTOR?

Click to see the video

NOBEL PRIZE IN PHYSICS IN 2016 : the tools of topology are used to study the exotic states in matter

D.J. Thouless:

- Concept of topological order
- Notion of topological invariants

F.D.M. Haldane:

Theory of the fractional quantum Hall effect

J.M. Kosterlitz:

 Study of phase transitions in topological materials (Kosterlitz-Thouless transition)

Definition

The **topology** is the branch of mathematics which studies the spatial deformations of objects under continuous transformations, i.e. without cutting or re-collations applied to the structures. See the video

A cup can be transform to a donut (torus) with a continuous deformation : these two objects have the same topological index χ , called the Euler characteristic. We have : $\chi = 2(1-g)$ where g (genus) is the number of holes.

Torus : $g = 1 \Rightarrow \chi = 0$

Cube, cylinder cone and sphere are topologically equivalent.

Sphere: $g = 0 \Rightarrow \chi = 2$

We have also $\chi = n_V - n_E + n_F$

TOPOLOGY OF THE ENERGY BANDS IN A SOLID

Band inversion at $d_c = 6.3$ nm

- I: d = 5.5 nm
- $\rightarrow \textbf{Trivial insulator}$
- II, III, IV : d = 7.3 nm
- ightarrow Topological insulator

GAP CLOSURE

At the interface between two insulators :

- If they are both trivial, or both topological, they have the same Chern number C: it is possible to go from one to the other thanks to a continuous transformation without closing the gap.
- If one is trivial and the other topological, they have distinct Chern numbers : $\mathcal{C}_1 \neq \mathcal{C}_2$. The gap will be closed at the interface, leading to the appearance of conducting edge states. This is precisely what it is observed at the interface between a topological insulator and the vacuum (= trivial insulator).

11 / 32

QUANTUM HALL EFFECT

GALLIUM ARSENIDE 2DEG

$$(1980) \rho_H = \frac{h}{e^2} \frac{1}{\mathcal{C}}$$

(1982) D.J. Thouless and co-workers showed that \mathcal{C} is a topological invariant

(1985) Klaus von Klitzing got the Nobel prize in physics

2D TOPOLOGICAL INSULATORS

- Magnetic field → Hall effect
- ullet Spin-orbit coupling o Spin Hall effect
- Magnetic material → Anomalous Hall effect

3D TOPOLOGICAL INSULATORS (2009)

Material with strong spin-orbit coupling : Bi_2Se_3

ARPES

Surface states

See the video on ARPES

BERRY CONNEXION

$$\overrightarrow{\mathcal{A}}_n(\vec{k}) = i\Psi_n^{\dagger}(\vec{k}) \vec{\nabla}_{\vec{k}} \Psi_n(\vec{k})$$

where $\Psi_n(\vec{k})$ are the eigenvectors of the Hamiltonian H.

$$H\Psi_n(\vec{k}) = E_n(\vec{k})\Psi_n(\vec{k})$$

Michael Berry

BERRY CURVATURE

$$\vec{\mathcal{B}}_n(\vec{k}) = \vec{
abla}_{\vec{k}} imes \vec{\mathcal{A}}_n(\vec{k}) = \overrightarrow{\mathrm{rot}}_{\vec{k}} \vec{\mathcal{A}}_n(\vec{k})$$

ANALOGY

Berry connexion $\vec{\mathcal{A}}_n(\vec{k})$ \longrightarrow Potential vector $\vec{\mathcal{A}}(\vec{r})$ Berry curvature $\vec{\mathcal{B}}_n(\vec{k}) = \vec{\nabla}_{\vec{k}} \times \vec{\mathcal{A}}_n(\vec{k}) \longrightarrow \text{Magnetic field } \vec{\mathcal{B}}(\vec{r}) = \vec{\nabla}_{\vec{r}} \times \vec{\mathcal{A}}(\vec{r})$

BERRY PHASE
$$\Phi_B = \int \vec{\mathcal{B}}(\vec{k}) \cdot d\vec{S}$$

The Berry phase can be seen as the phase gained by the wave function when the wave vector follows a close trajectory in the Brillouin zone.

ANOMALOUS VELOCITY

$$\vec{v}_n(\vec{k}) = \frac{1}{\hbar} \vec{\nabla}_{\vec{k}} E_n(\vec{k}) - \dot{\vec{k}} \times \vec{\mathcal{B}}_n(\vec{k})$$

Similar in form with the Lorentz force : $\vec{F} = -e\vec{\mathcal{E}} - e\vec{v} \times \vec{B}$ \Rightarrow Exercise 1 : use the anomalous velocity to show that $\sigma_H = (e^2/h)\mathcal{C}$

CHERN NUMBER

$$\mathcal{C} = \frac{1}{2\pi} \sum_{n} \int \vec{\mathcal{B}}_{n}(\vec{k}) \cdot d\vec{S} = \frac{\Phi_{B}}{2\pi}$$

TOPOLOGICAL INVARIANT \mathbb{Z}_2

$$\mathbb{Z}_2 = \frac{1}{2\pi} \left[\oint_{\delta 1\mathsf{BZ}} \vec{\mathcal{A}}(\vec{k}) \cdot d\vec{k} - \int_{1\mathsf{BZ}} \vec{\mathcal{B}}(\vec{k}) \cdot d\vec{S} \right] \mathsf{mod}(2)$$

EXERCISE 1 : SHOW THAT $\sigma_H = (e^2/h)C$

Electrical current : $\vec{l} = -e \vec{n} \langle \vec{v} \rangle$

Average velocity in the framework of Boltzmann equation theory :

$$\langle \vec{v} \rangle = \frac{\int_{\mathsf{1BZ}} \frac{d^3k}{(2\pi)^3} \vec{v}(\vec{k}) f(\vec{k})}{\int_{\mathsf{1BZ}} \frac{d^3k}{(2\pi)^3} f(\vec{k})}$$

where

- $n = \int_{1BZ} \frac{d^3k}{(2\pi)^3} f(\vec{k})$ is the electron density
- $f(\vec{k})$ is the out-of-equilibrium distribution function
- $ec{v}(ec{k}) = -\sum_n \dot{ec{k}} imes ec{\mathcal{B}}_n(ec{k})$ is the anomalous velocity, with $\hbar \dot{ec{k}} = ec{F}$

Thus,

$$\vec{l} = e \sum_{n} \int_{1BZ} \frac{d^3k}{(2\pi)^3} \dot{\vec{k}} \times \vec{\mathcal{B}}_n(\vec{k}) f(\vec{k}) = \frac{e}{\hbar} \sum_{n} \int_{1BZ} \frac{d^3k}{(2\pi)^3} \vec{F} \times \vec{\mathcal{B}}_n(\vec{k}) f(\vec{k})$$

20 / 32

EXERCISE 1 : SHOW THAT $\sigma_H = (e^2/h)C$

For $\vec{B}=\vec{0}$, one has $\vec{F}=-e\vec{\mathcal{E}}$, where $\vec{\mathcal{E}}$ is the electrical field, thus

$$ec{I} = -rac{e^2}{\hbar} \sum_n \int_{1 ext{BZ}} rac{d^3k}{(2\pi)^3} ec{\mathcal{E}} imes ec{\mathcal{B}}_n(ec{k}) f(ec{k})$$

We expand the curl product :

$$\begin{pmatrix} I_{x} \\ I_{y} \\ I_{z} \end{pmatrix} = -\frac{e^{2}}{\hbar} \sum_{n} \int_{1BZ} \frac{d^{3}k}{(2\pi)^{3}} \begin{pmatrix} \mathcal{E}_{y} \mathcal{B}_{n,z}(\vec{k}) - \mathcal{E}_{z} \mathcal{B}_{n,y}(\vec{k}) \\ \mathcal{E}_{z} \mathcal{B}_{n,x}(\vec{k}) - \mathcal{E}_{x} \mathcal{B}_{n,z}(\vec{k}) \\ \mathcal{E}_{x} \mathcal{B}_{n,y}(\vec{k}) - \mathcal{E}_{y} \mathcal{B}_{n,x}(\vec{k}) \end{pmatrix} f(\vec{k})$$

Since one has $\vec{l} = \sigma \vec{\mathcal{E}}$ and $\sigma_H = |\sigma_{xy}|$, one deduces that

$$\sigma_{H} = \frac{e^{2}}{2\pi\hbar} \sum_{n} \underbrace{\frac{1}{2\pi} \int_{1BZ} dk_{x} dk_{y} \mathcal{B}_{n,z}(\vec{k})}_{=\frac{1}{2\pi} \int_{1BZ} dk_{z} f(\vec{k})} \underbrace{\frac{1}{2\pi} \int_{1BZ} dk_{z} f(\vec{k})}_{=1}$$

Result :
$$\sigma_H = \frac{e^2}{h} \sum_n C_n = \frac{e^2}{h} C$$

4) DIRAC-WEYL HAMILTONIAN

22 / 32

4) DIRAC-WEYL HAMILTONIAN

DOPED GRAPHENE

HAMILTONIAN

$$H = \hbar v_F \vec{k} \cdot \vec{\sigma} = \vec{q} \cdot \vec{\sigma} + m\sigma_z$$

with $q_x \equiv \hbar v_F k_x$, $q_y \equiv \hbar v_F k_y$, $m \equiv \hbar v_F k_z$ and σ_x , σ_y , σ_z , the Pauli matrices

23 / 32

4) DIRAC-WEYL HAMILTONIAN

HAMILTONIAN

Pauli matrices :

$$\sigma_{\mathsf{x}} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \; , \hspace{0.5cm} \sigma_{\mathsf{y}} = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right) \; , \hspace{0.5cm} \sigma_{\mathsf{z}} = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)$$

Matrix form:

$$H = \left(\begin{array}{cc} m & q_x - iq_y \\ q_x + iq_y & -m \end{array}\right)$$

BAND STRUCTURE

$$E_m^{\pm}(\vec{q}) = \pm \sqrt{q^2 + m^2}$$

- $m = 0 \rightarrow \text{massless Dirac cone}$
- $m \neq 0 \rightarrow$ massive Dirac cone

⇒ Exercise 2 : Berry phase calculation

EXERCISE 2: Berry phase calculation

WORK TO DO

Starting from the Dirac-Weyl Hamiltonian :

$$H = \left(\begin{array}{cc} m & q_x - iq_y \\ q_x + iq_y & -m \end{array}\right)$$

It is asked you to calculate:

- **1** The eigenvalues $E_m^{\pm}(\vec{q})$ of H
- **2** The eigenvector $\Psi_m(\vec{q})$ associated to E_m^+
- **3** The Berry connexion $\vec{\mathcal{A}}_m(\vec{q}) = i \Psi_m^\dagger(\vec{q}) \vec{\nabla}_{\vec{q}} \Psi_m(\vec{q})$
- ullet The Berry curvature $ec{\mathcal{B}}_m(ec{q}) = ec{
 abla}_{ec{q}} imes ec{\mathcal{A}}_m(ec{q})$
- **6** The Berry phase $\Phi_B = \int \vec{\mathcal{B}}_m(\vec{q}) \cdot d\vec{S}$

EXERCISE 2: Berry phase calculation

RESULTS

- Eigenvalues : $E_m^{\pm}(\vec{q}) = \pm \sqrt{q^2 + m^2}$
- **2** Eigenvector $\Psi_m(\vec{q})$ associated to E_m^+ :

$$\Psi_m(\vec{q}) = rac{1}{\sqrt{q^2 + (m - \sqrt{q^2 + m^2})^2}} \left(egin{array}{c} q_x - iq_y \ \sqrt{q^2 + m^2} - m \end{array}
ight)$$

Berry connexion :

$$ec{\mathcal{A}}_m(ec{q}) = rac{-q_y ec{e}_x + q_x ec{e}_y}{2\sqrt{q^2 + m^2}(\sqrt{q^2 + m^2} - m)}$$

- **1** Berry curvature : $\vec{\mathcal{B}}_m(\vec{q}) = \frac{m\vec{e}_z}{2(q^2+m^2)^{3/2}}$
- **6** Berry phase : $\Phi_B = \pm \pi \operatorname{sgn}(m)$

27 / 32

SKYRMIONS = SPIN VORTICES

Lattice of skyrmions observed by Lorentz microscopy at the surface of $Fe_{1-x}Co_xSi$ (2011) **Dzyaloshinsky-Moriya** interaction :

$$\vec{D}_{ij}\cdot(\vec{S}_i\times\vec{S}_j)$$

Conditions:

 $Symmetry\ lowering\ +\ Spin-orbit\ coupling$

Topological protected:

Cannot be removed by continuous transformation

May be used for high density data storage See the video

MAJORANA FERMIONS (1937)

Real solution of the Dirac equation such as the particle and anti-particle coincide : $\Psi=\Psi^*.$

As a consequence, creation and annihilation operators are equal :

$$\gamma = \gamma^\dagger$$

EXAMPLE: KITAEV SUPERCONDUCTING CHAIN (2001)

$$H = -\mu \sum_{n=1}^{N} (c_n^{\dagger} c_n - 1/2) + \sum_{n=1}^{N-1} [t(c_n^{\dagger} c_{n+1} + c_{n+1}^{\dagger} c_n) - \Delta (c_n c_{n+1} + c_{n+1}^{\dagger} c_n^{\dagger})]$$

We use $\gamma_n^A = (c_n + c_n^{\dagger})/\sqrt{2}$ and $\gamma_n^B = i(c_n - c_n^{\dagger})/\sqrt{2}$, then :

$$H = i\mu \sum_{n=1}^{N} \gamma_n^A \gamma_n^B + i \sum_{n=1}^{N-1} [(t+\Delta) \gamma_n^B \gamma_{n+1}^A - (t-\Delta) \gamma_n^A \gamma_{n+1}^B]$$

adeline.crepieux@univ-amu.fr

EXAMPLE: KITAEV SUPERCONDUCTING CHAIN

We set $\mu=0$ and $\Delta=t$:

$$H = 2it \sum_{n=1}^{N-1} \gamma_n^B \gamma_{n+1}^A$$

Two Majorana fermions appear at the extremities of the chain.

See the video

6) SUMMARY

6) SUMMARY

- Insulator in the bulk but conductor on the surfaces/edges
- Current propagate without dissipation
- Crucial role played by the spin-orbit coupling
- Opposite spins propagate in opposite direction
- Phase transitions are not related to symmetry breaking
- Instead, the system is characterized by topological invariants
- New field of research : **Topotronics**

Book: Introduction à la physique de la matière condensée, Dunod (2019)